

### **PLAYING WITH NUMBERS**

#### Q1. State an example to prove that each of the following statements is False:

- a. Any pair of prime numbers are called twin primes, e.g.: (13, 19). Example of twin primes: \_\_\_\_\_
- b. Two consecutive numbers can be co-primes only if both are primes, e.g.: (2, 3).
  Example of two consecutive co-primes where both numbers are not primes: \_\_\_\_\_\_
- c. A set of any three prime numbers is called a prime triplet, e.g.: (2, 5, 13).

Example of a prime triplet:

d. In a pair of co-prime numbers, at least one number should be prime, e.g.: (3, 8).

Example of co-primes where none of the numbers is prime:

## Q2. Find the smallest and the greatest 4-digit number which is divisible by both 2 and 3.

| Smallest Number: |  |
|------------------|--|
| Greatest Number: |  |

Q3. Find the digit which should replace \* in 89\*910 to make it divisible by 11.

Answer: \_\_\_\_\_

Q4. Find the prime factors of 3675 and fill in the boxes with the correct numbers:

 $3675 = 2^{\square} \times 3^{\square} \times 5^{\square} \times 7^{\square} \times 11^{\square} \times 12^{\square}$ 

1

- Q5. Fill in the blanks with divisible or not divisible to make the following statements always True:
  - a. If a number x = 2y, then x is \_\_\_\_\_ by each factor of y.
  - b. If a number x is divisible by two co-prime numbers a and b, then x is \_\_\_\_\_ by ab.
  - c. If two numbers p and q are completely divisible by z, then (p + q) is \_\_\_\_\_ by z.
  - d. If a number a is divisible by two co-prime numbers b and c, then a is \_\_\_\_\_ by (b + c) and (b c).

#### Q6. Find whether the following statement is True or not:

All even multiples of 3 are multiples of 2 and 6.

Give reasons in support of your answer.

Answer: \_\_\_\_\_

Q7. Find whether the following numbers are multiples of 2, 3, 4, 5, 6, 7, 8, 9 and 11. Write Yes in the table if each of the given number is a multiple:

| Number | sible | sible | sible | Divi-<br>sible<br>by 5 | sible | sible | sible | sible | sible |
|--------|-------|-------|-------|------------------------|-------|-------|-------|-------|-------|
| 4752   |       |       |       |                        |       |       |       |       |       |
| 11000  |       |       |       |                        |       |       |       |       |       |
| 1785   |       |       |       |                        |       |       |       |       |       |

Q8. Find the smallest number, which should be added to 56917, to make it divisible by 4 and 5.

Answer: \_\_\_\_\_

Q9. A number n is divisible by 2x and 2x+1. Find the smallest value of x, if n is divisible by 6 as well.

2

x = \_\_\_\_

# Q10. Write the smallest number with 2, 3, 4, 5 and 6 digits, which is divisible by 11.

- a. Smallest number with 2 digits divisible by 11
- b. Smallest number with 3 digits divisible by 11
- c. Smallest number with 4 digits divisible by 11
- d. Smallest number with 5 digits divisible by 11
- e. Smallest number with 6 digits divisible by 11

| • |  |
|---|--|
|   |  |
| • |  |
| • |  |
| : |  |
|   |  |
| • |  |

### Answers

- **1.** a. (3, 5); b. (12, 13); c. (3, 5, 7); d. (8, 27)
- 2. Smallest Number: 1002; Greatest Number: 9996
- **3.** 9
- **4.**  $3675 = 2^{\circ} \times 3^{1} \times 5^{2} \times 7^{2} \times 11^{\circ} \times 13^{\circ}$
- 5. a. divisible; b. divisible; divisible; not divisible
- 6. True. All even numbers are multiples of 2. So, all even multiples of 3 will be multiples of 2 and 3 both. Since the numbers are divisible by 2 and 3, they will be divisible by 6 also.

7.

| Number | sible | sible | sible | sible       | sible | sible | sible | sible | sible |
|--------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|
|        | by 2  | by 3  | by 4  | <b>by 5</b> | by 6  | by 7  | by 8  | by 9  | by 11 |
| 4752   | Yes   | Yes   | Yes   |             | Yes   |       | Yes   | Yes   | Yes   |
| 11000  | Yes   |       | Yes   | Yes         |       |       | Yes   |       | Yes   |
| 1785   |       | Yes   |       | Yes         |       | Yes   |       |       |       |

**8.** 3

**9.** x = 1

#### **10.** a. 11; b. 110; c. 1001; d. 10010; e. 100001